Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
BMC Cancer ; 23(1): 185, 2023 Feb 23.
Article in English | MEDLINE | ID: covidwho-2270235

ABSTRACT

BACKGROUND: Glioblastoma, the most common primary malignant brain tumour in adults, is a highly vascular tumour characterised by abnormal angiogenesis. Additional mechanisms of tumour vascularisation have also been reported in glioblastoma, including the formation of tumour cell-derived vessels by vasculogenic mimicry (VM) or the transdifferentiation of tumour cells to endothelial cells. VM and endothelial transdifferentiation have frequently been reported as distinct processes, however, the use of both terms to describe a single process of vascularisation also occurs. Some overlapping characteristics have also been reported when identifying each process. We therefore aimed to determine the markers consistently attributed to VM and endothelial transdifferentiation in the glioblastoma literature. METHODS: Ovid MEDLINE and Ovid Embase were searched for studies published between January 1999 and July 2021 that assessed VM or tumour to endothelial transdifferentiation in human glioblastoma. The online systematic review tool Covidence was used for screening and data extraction. Extracted data included type of tumour-derived vasculature reported, methods and techniques used, and markers investigated. Studies were grouped based on type of vasculature reported for further assessment. RESULTS: One hundred and thirteen of the 419 unique records identified were included for analysis. VM was reported in 64/113 studies, while tumour to endothelial transdifferentiation was reported in 16/113 studies. The remaining studies used both terms to describe a single process, did not define the process that occurred, or concluded that neither VM nor endothelial transdifferentiation occurred. Absence of CD34 and/or CD31 in vascular structures was the most common indicator of VM, while expression of CD34 and/or CD31, in addition to various other endothelial, stem cell or tumour cell markers, indicated tumour to endothelial transdifferentiation. CONCLUSION: Cells derived from tumour to endothelial transdifferentiation express typical endothelial markers including CD34 and CD31, while tumour cells contributing to VM lack CD34 and CD31 expression. Additional tumour markers are required to identify transdifferentiation in glioblastoma tissue, and this process requires further characterisation.


Subject(s)
Glioblastoma , Adult , Humans , Glioblastoma/pathology , Endothelial Cells/metabolism , Cell Transdifferentiation , Neovascularization, Pathologic/metabolism , Cell Differentiation , Biomarkers, Tumor
2.
Ocul Immunol Inflamm ; : 1-9, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2122993

ABSTRACT

PURPOSE: To study the effect of coronavirus disease of 2019 (COVID-19) on retinal vasculature by Optical Coherence Tomography Angiography (OCTA). METHODS: Macular OCTA images of patients recovered from COVID-19 infections were studied including foveal avascular zone (FAZ), capillary vascular densities (CVD) of the superficial and deep capillary network (SCP, DCP), and central foveal thickness (CFT). RESULTS: The FAZ area was significantly larger in post COVID-19 cases compared to the healthy controls (p=0.032). Post COVID-19 cases had significant lower CVDs in perifoveal quadrants of the SCP. They also had lower CVD in the whole area, parafoveal, temporal and inferior perifoveal areas in the DCP. The parafoveal DCP area showed a positive correlation with disease duration (r=0.249, p-value=0.018). The whole SCP was significantly larger in cases with lymphopenia (p-value=0.004). CONCLUSION: This study found asymptomatic retinal vascular affection in post COVID-19 eyes showing a relation with disease clinical and laboratory features.

3.
Biomedicines ; 10(11)2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2089995

ABSTRACT

Pandemic infection secondary to coronavirus disease 2019 (COVID-19) had an important impact on the general population affecting not only respiratory tract but also many other organs. Ocular manifestations are quite common at the level of the anterior segment (conjunctivitis, dry eye), while posterior segment and, in particular, retinal findings are less frequent. In the retina, COVID-19 is associated with vascular events. Since retinal arteries and veins represent an accessible window to the microvasculature of the rest of the body, a better understanding of the profile of retinal vascular occlusive events may help elucidate mechanisms of thrombo-occlusive complications in other organs in patients affected by COVID-19. In this review, we conducted a systematic literature search focused on retinal arterial and/or retinal venous manifestations. Twenty-one studies were included, describing a wide range of manifestations from mild signs like cotton wool spots, focal and flame-shaped hemorrhages, and vein dilation to more severe retinal artery and vein occlusions. Two principal pathogenetic mechanisms are considered responsible for these complications: a hypercoagulative state and a massive inflammatory response leading to a disseminated intravascular coagulation-like syndrome.

4.
Cell Biol Int ; 46(12): 2257-2261, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1999839

ABSTRACT

Vascular barrier dysfunction due to endothelial hyperpermeability has been associated with the pathophysiology of sepsis and severe lung injury, which may inflict acute respiratory distress syndrome (ARDS). Our group is focused on the mechanisms operating towards the regulation of endothelial permeability, to contribute in the development of efficient and targeted countermeasures against ARDS. Unfortunately, the number of ARDS-related deaths in the intensive care units has dramatically increased during the COVID-19 era. The findings described herein inform the corresponding scientific and medical community on the relation of P53 and stress responses in barrier function.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Sepsis , Humans , Tumor Suppressor Protein p53/metabolism , Unfolded Protein Response , Sepsis/metabolism , Lung/metabolism
5.
Cell Mol Life Sci ; 79(7): 361, 2022 Jun 13.
Article in English | MEDLINE | ID: covidwho-1888837

ABSTRACT

COVID-19 is a complex disease with short- and long-term respiratory, inflammatory and neurological symptoms that are triggered by the infection with SARS-CoV-2. Invasion of the brain by SARS-CoV-2 has been observed in humans and is postulated to be involved in post-COVID state. Brain infection is particularly pronounced in the K18-hACE2 mouse model of COVID-19. Prevention of brain infection in the acute phase of the disease might thus be of therapeutic relevance to prevent long-lasting symptoms of COVID-19. We previously showed that melatonin or two prescribed structural analogs, agomelatine and ramelteon delay the onset of severe clinical symptoms and improve survival of SARS-CoV-2-infected K18-hACE2 mice. Here, we show that treatment of K18-hACE2 mice with melatonin and two melatonin-derived marketed drugs, agomelatine and ramelteon, prevents SARS-CoV-2 entry in the brain, thereby reducing virus-induced damage of small cerebral vessels, immune cell infiltration and brain inflammation. Molecular modeling analyses complemented by experimental studies in cells showed that SARS-CoV-2 entry in endothelial cells is prevented by melatonin binding to an allosteric-binding site on human angiotensin-converting enzyme 2 (ACE2), thus interfering with ACE2 function as an entry receptor for SARS-CoV-2. Our findings open new perspectives for the repurposing of melatonergic drugs and its clinically used analogs in the prevention of brain infection by SARS-CoV-2 and COVID-19-related long-term neurological symptoms.


Subject(s)
COVID-19 Drug Treatment , Melatonin , Angiotensin-Converting Enzyme 2 , Animals , Brain/metabolism , Endothelial Cells/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Mice , Mice, Transgenic , Peptidyl-Dipeptidase A , SARS-CoV-2
6.
Stem Cell Reports ; 17(5): 1089-1104, 2022 05 10.
Article in English | MEDLINE | ID: covidwho-1799706

ABSTRACT

Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, and in heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Pericytes , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/complications , Cardiovascular Diseases/virology , Endothelial Cells , Mice , Pericytes/metabolism , SARS-CoV-2
7.
Clin Exp Optom ; 105(8): 842-847, 2022 11.
Article in English | MEDLINE | ID: covidwho-1506717

ABSTRACT

CLINICAL RELEVANCE: Understanding the impact of the COVID-19 virus on the retinochoroidal vasculature can provide valuable information regarding potential multi-organ ischaemic sequelae in COVID-19 patients, and can thus be a useful tool for optometrists, ophthalmologists, pulmonologists, infectious disease specialists and others. BACKGROUND: Assessment of retinochoroidal vasculature alterations in recovered mild COVID-19 patients using optical coherence tomography angiography (OCTA) when compared to age and ethnic matched controls. METHODS: Multimodal imaging was performed using OCTA, spectral domain (SD)-OCT (Optovue RTVue XR Avanti; Optovue, Inc, Fremont, CA), and colour fundus photography (Compass; iCare Inc, Raleigh, NC). Vessel flow density, foveal avascular zone, foveal perimeter circumference and retinal thickness were calculated automatically by the OCTA software on 6 × 6mm angiograms. Morphologic changes in the retinochoroidal vasculature on OCTA were assessed and compared with the findings on fundoscopy, SD-OCT and fundus photography and were evaluated by two trained graders. RESULTS: Mean vessel parafoveal density, superior and inferior hemispheric vessel density and perifoveal temporal vessel density on 6 × 6 angiograms of the superficial capillary plexus were lower among the COVID-19 patients when compared to their age and ethnic matched controls. Vessel flow density of the deep capillary plexus, foveal avascular zone size and circumference and retinal thickness did not illustrate statistical significance between the groups. CONCLUSION: OCTA provides non-invasive high-resolution imaging of the retinochoroidal vascular network. Compared with conventional imaging, OCTA can demonstrate precise microvascular structural alterations in the retinal vessels before visible on SD-OCT or fundus examination. When matched for age and ethnicity, patients with a history of mild COVID illness manifested alterations in vessel density.


Subject(s)
COVID-19 , Eye Diseases , Humans , Tomography, Optical Coherence/methods , Fluorescein Angiography/methods , Ethnicity , COVID-19/diagnostic imaging , Retinal Vessels/diagnostic imaging , Fundus Oculi
8.
Graefes Arch Clin Exp Ophthalmol ; 260(4): 1275-1288, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1491134

ABSTRACT

PURPOSE: The purpose of this study is to assess for histopathological changes within the retina and the choroid and determine the long-term sequelae of the SARS-CoV-2 infection. METHODS: Eyes from seven COVID-19-positive and six similar age-matched control donors with a negative test for SARS-CoV-2 were assessed. Globes were evaluated ex vivo with macroscopic, SLO and OCT imaging. Macula and peripheral regions were processed for Epon embedding and immunocytochemistry. RESULTS: Fundus analysis shows hemorrhagic spots and increased vitreous debris in several of the COVID-19 eyes compared to the controls. OCT-based measurements indicated an increased trend in retinal thickness in the COVID-19 eyes; however, the difference was not statistically significant. Histology of the retina showed presence of hemorrhages and central cystoid degeneration in several of the donors. Whole mount analysis of the retina labeled with markers showed changes in retinal microvasculature, increased inflammation, and gliosis in the COVID-19 eyes compared to the controls. The choroidal vasculature displayed localized changes in density and signs of increased inflammation in the COVID-19 samples. CONCLUSIONS: In situ analysis of the retinal tissue suggests that there are severe subclinical abnormalities that could be detected in the COVID-19 eyes. This study provides a rationale for evaluating the ocular physiology of patients that have recovered from COVID-19 infections to further understand the long-term effects caused by this virus.


Subject(s)
COVID-19 , Macula Lutea , COVID-19/complications , Choroid/pathology , Gliosis/diagnosis , Gliosis/pathology , Humans , Inflammation/diagnosis , Inflammation/pathology , Retina , SARS-CoV-2 , Tomography, Optical Coherence
9.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1488609

ABSTRACT

A wide range of neurological manifestations have been associated with the development of COVID-19 following SARS-CoV-2 infection. However, the etiology of the neurological symptomatology is still largely unexplored. Here, we used state-of-the-art multiplexed immunostaining of human brains (n = 6 COVID-19, median age = 69.5 years; n = 7 control, median age = 68 years) and demonstrated that expression of the SARS-CoV-2 receptor ACE2 is restricted to a subset of neurovascular pericytes. Strikingly, neurological symptoms were exclusive to, and ubiquitous in, patients that exhibited moderate to high ACE2 expression in perivascular cells. Viral dsRNA was identified in the vascular wall and paralleled by perivascular inflammation, as signified by T cell and macrophage infiltration. Furthermore, fibrinogen leakage indicated compromised integrity of the blood-brain barrier. Notably, cerebrospinal fluid from additional 16 individuals (n = 8 COVID-19, median age = 67 years; n = 8 control, median age = 69.5 years) exhibited significantly lower levels of the pericyte marker PDGFRß in SARS-CoV-2-infected cases, indicative of disrupted pericyte homeostasis. We conclude that pericyte infection by SARS-CoV-2 underlies virus entry into the privileged central nervous system space, as well as neurological symptomatology due to perivascular inflammation and a locally compromised blood-brain barrier.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Brain/virology , COVID-19/physiopathology , Encephalitis, Viral/virology , Pericytes/virology , Angiotensin-Converting Enzyme 2/genetics , Animals , Blood-Brain Barrier , Brain/pathology , COVID-19/etiology , Case-Control Studies , Encephalitis, Viral/pathology , Fibrinogen/metabolism , Humans , Immunohistochemistry/methods , Mice , Pericytes/metabolism , Pericytes/pathology , Receptor, Platelet-Derived Growth Factor beta/cerebrospinal fluid
10.
Biomedicines ; 9(11)2021 Oct 26.
Article in English | MEDLINE | ID: covidwho-1488480

ABSTRACT

The purpose of this study was to assess vascular and histological alterations in two COVID-19 and three control post-mortem retinas. The macular areas of flat-mounted samples were processed for immunofluorescence. Lectin and collagen IV positive vessels were captured under confocal microscopy, and endothelium loss and tortuosity were analyzed. Expression of ACE2 (angiotensin-converting enzyme 2) (the receptor for SARS-CoV-2), Iba1 (ionized calcium-binding adaptor molecule 1) and GFAP (glial fibrillary acidic protein) were quantified in retinal sections. The number of lectin vessels in COVID-19 retinas decreased by 27% compared to the control (p < 0.01) and the tortuosity increased in COVID-19 retinas (7.3 ± 0.2) vs. control retinas (6.8 ± 0.07) (p < 0.05). Immunofluorescence analysis revealed an increase in ACE2 (2.3 ± 1.3 vs. 1.0 ± 0.1; p < 0.0001) and Iba1 expression (3.06 ± 0.6 vs. 1.0 ± 0.1; p < 0.01) in COVID-19 sections whereas no changes in GFAP were observed. Analysis of the COVID-19 macular retinal tissue suggested that endothelial cells are a preferential target of SARS-CoV-2 with subsequent changes through their ACE2 receptor expression and morphology. Thus, microglial activation was hyperactive when facing an ensuing immunological challenge after SARS-CoV-2 infection.

11.
Elife ; 102021 10 25.
Article in English | MEDLINE | ID: covidwho-1485451

ABSTRACT

Severe acute respiratory syndrome (SARS)-CoV-2 infection leads to severe disease associated with cytokine storm, vascular dysfunction, coagulation, and progressive lung damage. It affects several vital organs, seemingly through a pathological effect on endothelial cells. The SARS-CoV-2 genome encodes 29 proteins, whose contribution to the disease manifestations, and especially endothelial complications, is unknown. We cloned and expressed 26 of these proteins in human cells and characterized the endothelial response to overexpression of each, individually. Whereas most proteins induced significant changes in endothelial permeability, nsp2, nsp5_c145a (catalytic dead mutant of nsp5), and nsp7 also reduced CD31, and increased von Willebrand factor expression and IL-6, suggesting endothelial dysfunction. Using propagation-based analysis of a protein-protein interaction (PPI) network, we predicted the endothelial proteins affected by the viral proteins that potentially mediate these effects. We further applied our PPI model to identify the role of each SARS-CoV-2 protein in other tissues affected by coronavirus disease (COVID-19). While validating the PPI network model, we found that the tight junction (TJ) proteins cadherin-5, ZO-1, and ß-catenin are affected by nsp2, nsp5_c145a, and nsp7 consistent with the model prediction. Overall, this work identifies the SARS-CoV-2 proteins that might be most detrimental in terms of endothelial dysfunction, thereby shedding light on vascular aspects of COVID-19.


Subject(s)
Capillary Permeability , Endothelium, Vascular/metabolism , Host-Pathogen Interactions , SARS-CoV-2/metabolism , Viral Proteins/metabolism , Animals , COVID-19/virology , Human Umbilical Vein Endothelial Cells , Humans , Protein Interaction Maps , Tight Junction Proteins/metabolism
12.
Cardiovasc Res ; 117(4): 1015-1032, 2021 03 21.
Article in English | MEDLINE | ID: covidwho-1369073

ABSTRACT

The motivation for this review comes from the emerging complexity of the autonomic innervation of the carotid body (CB) and its putative role in regulating chemoreceptor sensitivity. With the carotid bodies as a potential therapeutic target for numerous cardiorespiratory and metabolic diseases, an understanding of the neural control of its circulation is most relevant. Since nerve fibres track blood vessels and receive autonomic innervation, we initiate our review by describing the origins of arterial feed to the CB and its unique vascular architecture and blood flow. Arterial feed(s) vary amongst species and, unequivocally, the arterial blood supply is relatively high to this organ. The vasculature appears to form separate circuits inside the CB with one having arterial venous anastomoses. Both sympathetic and parasympathetic nerves are present with postganglionic neurons located within the CB or close to it in the form of paraganglia. Their role in arterial vascular resistance control is described as is how CB blood flow relates to carotid sinus afferent activity. We discuss non-vascular targets of autonomic nerves, their possible role in controlling glomus cell activity, and how certain transmitters may relate to function. We propose that the autonomic nerves sub-serving the CB provide a rapid mechanism to tune the gain of peripheral chemoreflex sensitivity based on alterations in blood flow and oxygen delivery, and might provide future therapeutic targets. However, there remain a number of unknowns regarding these mechanisms that require further research that is discussed.


Subject(s)
Arteries/innervation , Autonomic Nervous System/physiopathology , Cardiovascular Diseases/physiopathology , Carotid Body/blood supply , Hemodynamics , Oxygen/blood , Reflex , Animals , Autonomic Nervous System/metabolism , Cardiovascular Diseases/blood , Humans , Regional Blood Flow , Species Specificity
13.
J Appl Physiol (1985) ; 131(2): 454-463, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1346099

ABSTRACT

This study reports systematic longitudinal pathophysiology of lung parenchymal and vascular effects of asymptomatic COVID-19 pneumonia in a young, healthy never-smoking male. Inspiratory and expiratory noncontrast along with contrast dual-energy computed tomography (DECT) scans of the chest were performed at baseline on the day of acute COVID-19 diagnosis (day 0), and across a 90-day period. Despite normal vital signs and pulmonary function tests on the day of diagnosis, the CT scans and corresponding quantification metrics detected abnormalities in parenchymal expansion based on image registration, ground-glass (GGO) texture (inflammation) as well as DECT-derived pulmonary blood volume (PBV). Follow-up scans on day 30 showed improvement in the lung parenchymal mechanics as well as reduced GGO and improved PBV distribution. Improvements in lung PBV continued until day 90. However, the heterogeneity of parenchymal mechanics and texture-derived GGO increased on days 60 and 90. We highlight that even asymptomatic COVID-19 infection with unremarkable vital signs and pulmonary function tests can have measurable effects on lung parenchymal mechanics and vascular pathophysiology, which may follow apparently different clinical courses. For this asymptomatic subject, post COVID-19 regional mechanics demonstrated persistent increased heterogeneity concomitant with return of elevated GGOs, despite early improvements in vascular derangement.NEW & NOTEWORTHY We characterized the temporal changes of lung parenchyma and microvascular pathophysiology from COVID-19 infection in an asymptomatic young, healthy nonsmoking male using dual-energy CT. Lung parenchymal mechanics and microvascular disease followed different clinical courses. Heterogeneous perfused blood volume became more uniform on follow-up visits up to 90 days. However, post COVID-19 mechanical heterogeneity of the lung parenchyma increased after apparent improvements in vascular abnormalities, even with normal spirometric indices.


Subject(s)
COVID-19 , Pneumonia , COVID-19 Testing , Humans , Lung/diagnostic imaging , Male , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
14.
Tissue Barriers ; 9(4): 1929787, 2021 10 02.
Article in English | MEDLINE | ID: covidwho-1276097

ABSTRACT

Endothelial barrier dysfunction (EBD) is the hallmark of Acute Respiratory Distress Syndrome (ARDS), a potentially lethal respiratory disorder associated with the COVID-19 - related deaths. Herein, we employed a cecal ligation and puncture (CLP) murine model of sepsis, to evaluate the effects of sepsis-induced EBD in the expression of the never in mitosis A (NIMA)-related kinases (NEKs). Members of that family of kinases regulate the activity and expression of the tumor suppressor P53, previously shown to modulate the actin cytoskeleton remodeling. Our results introduce the induction of NEK2, NEK3, NEK4, NEK7, and NEK9 in a CLP model of sepsis. Hence, we suggest that NEKs are involved in inflammatory processes and are holding the potential to serve as novel therapeutic targets for pathologies related to EBD, including ARDS and sepsis. Further studies will delineate the underlying molecular events and their interrelations with P53.


Subject(s)
Lung/metabolism , NIMA-Related Kinases/metabolism , Sepsis/metabolism , Alveolar Epithelial Cells/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , NIMA-Related Kinases/genetics , Tumor Suppressor Protein p53/metabolism
15.
Life Sci ; 270: 119130, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1065432

ABSTRACT

SARS-CoV-2 infection or COVID-19 has become a worldwide pandemic; however, effective treatment for COVID-19 remains to be established. Along with acute respiratory distress syndrome (ARDS), new and old cardiovascular injuries are important causes of significant morbidity and mortality in COVID-19. Exploring new approaches managing cardiovascular complications is essential in controlling the disease progression and preventing long-term complications. Oxytocin (OXT), an immune-regulating neuropeptide, has recently emerged as a strong candidate for treatment and prevention of COVID-19 pandemic. OXT carries special functions in immunologic defense, homeostasis and surveillance. It suppresses neutrophil infiltration and inflammatory cytokine release, activates T-lymphocytes, and antagonizes negative effects of angiotensin II and other key pathological events of COVID-19. Additionally, OXT can promote γ-interferon expression to inhibit cathepsin L and increases superoxide dismutase expression to reduce heparin and heparan sulphate fragmentation. Through these mechanisms, OXT can block viral invasion, suppress cytokine storm, reverse lymphocytopenia, and prevent progression to ARDS and multiple organ failures. Importantly, besides prevention of metabolic disorders associated with atherosclerosis and diabetes mellitus, OXT can protect the heart and vasculature through suppressing hypertension and brain-heart syndrome, and promoting regeneration of injured cardiomyocytes. Unlike other therapeutic agents, exogenous OXT can be used safely without the side-effects seen in remdesivir and corticosteroid. Importantly, OXT can be mobilized endogenously to prevent pathogenesis of COVID-19. This article summarizes our current understandings of cardiovascular pathogenesis caused by COVID-19, explores the protective potentials of OXT against COVID-19-associated cardiovascular diseases, and discusses challenges in applying OXT in treatment and prevention of COVID-19. CHEMICAL COMPOUNDS: Angiotensin-converting enzyme 2 (ACE2); atrial natriuretic peptide (ANP); cathepsin L; heparan sulphate proteoglycans (HSPGs); interferon; interleukin; oxytocin; superoxide dismutase; transmembrane serine protease isoform 2 (TMPRSS2).


Subject(s)
COVID-19 Drug Treatment , COVID-19/complications , Cardiovascular Diseases/prevention & control , Oxytocin/therapeutic use , Animals , COVID-19/prevention & control , COVID-19/virology , Cardiovascular Diseases/virology , Comorbidity , Humans , Oxytocin/adverse effects , SARS-CoV-2/physiology
16.
EClinicalMedicine ; 27: 100550, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-778782

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has been associated to microvascular alterations. We screened the fundus of patients with COVID-19 to detect alterations of the retina and its vasculature and to assess possible correlations with clinical parameters. METHODS: Cross-sectional study. The presence of retinal alterations in patients with COVID-19 and subjects unexposed to the virus was assessed using fundus photographs and their prevalence was compared. Mean arteries diameter (MAD) and mean veins diameter (MVD) were compared between patients and unexposed subjects with multiple linear regression including age, sex, ethnicity, body mass index, smoking/alcohol consumption, hypertension, hyperlipidaemia, diabetes as covariates. The influence of clinical/lab parameters on retinal findings was tested in COVID-19 patients. FINDINGS: 54 patients and 133 unexposed subjects were enrolled. Retinal findings in COVID-19 included: haemorrhages (9·25%), cotton wools spots (7·4%), dilated veins (27·7%), tortuous vessels (12·9%). Both MAD and MVD were higher in COVID-19 patients compared to unexposed subjects (98·3 ± 15·3 µm vs 91·9 ± 11·7 µm, p = 0.006 and 138·5 ± 21·5 µm vs 123·2 ± 13·0 µm, p<0.0001, respectively). In multiple regression accounting for covariates MVD was positively associated with COVID-19 both in severe (coefficient 30·3, CI95% 18·1-42·4) and non-severe (coefficient 10·3, CI95% 1·6-19·0) cases compared to unexposed subjects. In COVID-19 patients MVD was negatively correlated with the time from symptoms onset (coefficient -1·0, CI 95% -1·89 to -0·20) and positively correlated with disease severity (coefficient 22·0, CI 95% 5·2-38·9). INTERPRETATION: COVID-19 can affect the retina. Retinal veins diameter seems directly correlated with the disease severity. Its assessment could have possible applications in the management of COVID-19. FUNDING: None.

SELECTION OF CITATIONS
SEARCH DETAIL